Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Oral presentation

Fusion structural material development in view of DEMO design requirement

Tanigawa, Hiroyasu

no journal, , 

The fusion structural materials, especially those in blanket system, will be subjected to high heat loads and high flux 14 MeV fusion neutrons, and will experience thermal stresses, substantial magnetic forces in case of plasma disruptions, and high pressure loads in the case of a coolant leak. For this use, the structural material must have an adequate database including irradiation database to assure the mechanical properties, and to define the limits for its usage, along with sound technical bases on full scale manufacturing and joining technologies. In this talk, the strategy to develop fusion structural material in view of design requirement is discussed in case of structural material development for fusion blanket system.

Oral presentation

Status of physics and engineering conceptual design of the divertor for 1.5 GW-level fusion power Demo reactor

Asakura, Nobuyuki; Hoshino, Kazuo; Uto, Hiroyasu; Someya, Yoji; Tokunaga, Shinsuke; Shimizu, Katsuhiro; Suzuki, Satoshi; Tobita, Kenji; Ono, Noriyasu*; Ueda, Yoshio*; et al.

no journal, , 

Radiative cooling scenario by impurity seeding has been developed and the divertor geometry, and the plasma operation have been investigated for Demo with the fusion power of 1.5 GW, using SONIC simulation. Results showed the total peak heat load is reduced to less than 10 MWm$$^{-2}$$ for the total radiation power fraction of 0.7-0.8. The heat load can be handled by the water-cooling and tungsten (W) monoblock target design, provided that Cu-alloy cooling pipe is applied. The design is applied only in the divertor target. F82H cooling pipe design will be applied for the divertor baffle and dome under higher neutron flux and lower heat load condition. Heat transport analysis of the target design and cooling-water pipes showed that the divertor design can handle the heat load distribution. The conceptual design study of the Demo divertor and power exhaust is presented. Development issues of physics, engineering and plasma material interaction from ITER technology will be also discussed.

2 (Records 1-2 displayed on this page)
  • 1